On the logarithmic derivative of a meromorphic function
Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 711-718
Cet article a éte moissonné depuis la source Math-Net.Ru
We derive the following estimate for the quantity $m\bigl(r,\frac{f'}f\bigr)$ of the Nevanlinna theory of the distribution of values characterizing the growth of the logarithmic derivative of a meromorphic function $f(z)$, $f(0)=1$, $0: $$ m\bigl(r,\frac{f'}f\bigr)<\ln+\biggl[\frac{T(R,f)}r\Bigl(\frac R{R-r}\Bigr)^2\biggr]+6,0684. $$ This estimate is more accurate than that obtained earlier by Vu Ngoyan and I. V. Ostrovskii.
@article{MZM_1974_15_5_a6,
author = {A. S. Kolokol'nikov},
title = {On the logarithmic derivative of a~meromorphic function},
journal = {Matemati\v{c}eskie zametki},
pages = {711--718},
year = {1974},
volume = {15},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a6/}
}
A. S. Kolokol'nikov. On the logarithmic derivative of a meromorphic function. Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 711-718. http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a6/