On the analytic continuation of functions defined by regrouped power series
Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 683-690
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider functions defined by regrouped power series $f(z)=\sum_{n=0}^\infty z^{\lambda_n}P_{k_n}(z)$ in the disk $|z|<1$ and also in some domain $D$ outside of this disk. We obtain conditions under which $f(z)$ is analytically continuable outside of the disk $|z|<1$, the analytic continuation being effected with the help of the given series. We also consider the analytic continuability of functions $f(z,w)$.
@article{MZM_1974_15_5_a3,
author = {V. A. Belyaev},
title = {On the analytic continuation of functions defined by regrouped power series},
journal = {Matemati\v{c}eskie zametki},
pages = {683--690},
year = {1974},
volume = {15},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a3/}
}
V. A. Belyaev. On the analytic continuation of functions defined by regrouped power series. Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 683-690. http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a3/