Approximation of continuous periodic functions of many variables by spherical Riesz means
Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 821-832.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find in succession exact upper bounds for the magnitudes of the least upper bounds of the deviations of spherical Riesz means on classes of continuous periodic functions of many variables and, in a number of cases, we prove the asymptotic exactness of these estimates.
@article{MZM_1974_15_5_a18,
     author = {A. I. Stepanets},
     title = {Approximation of continuous periodic functions of many variables by spherical {Riesz} means},
     journal = {Matemati\v{c}eskie zametki},
     pages = {821--832},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a18/}
}
TY  - JOUR
AU  - A. I. Stepanets
TI  - Approximation of continuous periodic functions of many variables by spherical Riesz means
JO  - Matematičeskie zametki
PY  - 1974
SP  - 821
EP  - 832
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a18/
LA  - ru
ID  - MZM_1974_15_5_a18
ER  - 
%0 Journal Article
%A A. I. Stepanets
%T Approximation of continuous periodic functions of many variables by spherical Riesz means
%J Matematičeskie zametki
%D 1974
%P 821-832
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a18/
%G ru
%F MZM_1974_15_5_a18
A. I. Stepanets. Approximation of continuous periodic functions of many variables by spherical Riesz means. Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 821-832. http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a18/