Approximation of continuous periodic functions of many variables by spherical Riesz means
Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 821-832
Voir la notice de l'article provenant de la source Math-Net.Ru
We find in succession exact upper bounds for the magnitudes of the least upper bounds of the deviations of spherical Riesz means on classes of continuous periodic functions of many variables and, in a number of cases, we prove the asymptotic exactness of these estimates.
@article{MZM_1974_15_5_a18,
author = {A. I. Stepanets},
title = {Approximation of continuous periodic functions of many variables by spherical {Riesz} means},
journal = {Matemati\v{c}eskie zametki},
pages = {821--832},
publisher = {mathdoc},
volume = {15},
number = {5},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a18/}
}
TY - JOUR AU - A. I. Stepanets TI - Approximation of continuous periodic functions of many variables by spherical Riesz means JO - Matematičeskie zametki PY - 1974 SP - 821 EP - 832 VL - 15 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a18/ LA - ru ID - MZM_1974_15_5_a18 ER -
A. I. Stepanets. Approximation of continuous periodic functions of many variables by spherical Riesz means. Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 821-832. http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a18/