Duality between differentiability and rotundity for convex functions
Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 809-820.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize a theorem of Asplund and Rockafellar concerning the duality between the differentiability of a convex function with respect to a system of sets $\mathscript A$ and the $\mathscript A$ rotundity of the conjugate convex function to the case of differentiabilities and rotundities defined by pseudotopologies of a broad class, including pseudotopologies of convergence on systems of filters and their bulblike modifications.
@article{MZM_1974_15_5_a17,
     author = {V. I. Averbukh},
     title = {Duality between differentiability and rotundity for convex functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {809--820},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a17/}
}
TY  - JOUR
AU  - V. I. Averbukh
TI  - Duality between differentiability and rotundity for convex functions
JO  - Matematičeskie zametki
PY  - 1974
SP  - 809
EP  - 820
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a17/
LA  - ru
ID  - MZM_1974_15_5_a17
ER  - 
%0 Journal Article
%A V. I. Averbukh
%T Duality between differentiability and rotundity for convex functions
%J Matematičeskie zametki
%D 1974
%P 809-820
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a17/
%G ru
%F MZM_1974_15_5_a17
V. I. Averbukh. Duality between differentiability and rotundity for convex functions. Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 809-820. http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a17/