Solvability of a convolution equation in convex domains
Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 787-796
For an exponential function $a(z)$ we consider the convolution $a*x$ in the function space $H(G)$, consisting of functions analytic in convex domains $G$. We obtain conditions (close to necessary and sufficient) on $G$ and $G_1$ subject to which the equation $a*(H(G_1))=H(G)$ is satisfied.
@article{MZM_1974_15_5_a15,
author = {O. V. Epifanov},
title = {Solvability of a~convolution equation in convex domains},
journal = {Matemati\v{c}eskie zametki},
pages = {787--796},
year = {1974},
volume = {15},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a15/}
}
O. V. Epifanov. Solvability of a convolution equation in convex domains. Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 787-796. http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a15/