On a~problem in the theory of rings of principal ideals
Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 757-763.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a negative answer to a question posed by A. V. Jategaonkar: is it not true that an arbitrary primary principal left ideal ring is a factor of a prime principal left ideal ring? We give a counter example in the class of finite complete primary principal ideal rings, the so-called Galois–Eisenstein–Ore rings.
@article{MZM_1974_15_5_a11,
     author = {A. A. Nechaev},
     title = {On a~problem in the theory of rings of principal ideals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {757--763},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a11/}
}
TY  - JOUR
AU  - A. A. Nechaev
TI  - On a~problem in the theory of rings of principal ideals
JO  - Matematičeskie zametki
PY  - 1974
SP  - 757
EP  - 763
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a11/
LA  - ru
ID  - MZM_1974_15_5_a11
ER  - 
%0 Journal Article
%A A. A. Nechaev
%T On a~problem in the theory of rings of principal ideals
%J Matematičeskie zametki
%D 1974
%P 757-763
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a11/
%G ru
%F MZM_1974_15_5_a11
A. A. Nechaev. On a~problem in the theory of rings of principal ideals. Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 757-763. http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a11/