On a problem in the theory of rings of principal ideals
Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 757-763
Cet article a éte moissonné depuis la source Math-Net.Ru
We give a negative answer to a question posed by A. V. Jategaonkar: is it not true that an arbitrary primary principal left ideal ring is a factor of a prime principal left ideal ring? We give a counter example in the class of finite complete primary principal ideal rings, the so-called Galois–Eisenstein–Ore rings.
@article{MZM_1974_15_5_a11,
author = {A. A. Nechaev},
title = {On a~problem in the theory of rings of principal ideals},
journal = {Matemati\v{c}eskie zametki},
pages = {757--763},
year = {1974},
volume = {15},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a11/}
}
A. A. Nechaev. On a problem in the theory of rings of principal ideals. Matematičeskie zametki, Tome 15 (1974) no. 5, pp. 757-763. http://geodesic.mathdoc.fr/item/MZM_1974_15_5_a11/