Hilbert boundary-value problem for a class of singular matrix-functions
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 587-594
Cet article a éte moissonné depuis la source Math-Net.Ru
We present a statement and a solution of a Hilbert boundary-value problem for $n\times n$ matrix-functions, the singularity of which is characterized by a given integral $n\times n$ matrix. For the homogeneous problem we find solvability conditions and the number of linearly independent solutions; for the nonhomogeneous problem we find conditions of solvability and the number of these solutions. We make essential use of the standard left factorization of the coefficient of the problem.
@article{MZM_1974_15_4_a9,
author = {A. L. Lukov},
title = {Hilbert boundary-value problem for a~class of singular matrix-functions},
journal = {Matemati\v{c}eskie zametki},
pages = {587--594},
year = {1974},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a9/}
}
A. L. Lukov. Hilbert boundary-value problem for a class of singular matrix-functions. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 587-594. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a9/