Algebraic curves over functional fields with a~finite field of constants
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 561-570.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem of finiteness for curves of genus $g>1$, defined over a functional field of finite characteristic and having fixed invariants. As an application we obtain Tate's conjecture concerning homomorphisms of elliptic curves over a field of functions.
@article{MZM_1974_15_4_a6,
     author = {A. N. Parshin},
     title = {Algebraic curves over functional fields with a~finite field of constants},
     journal = {Matemati\v{c}eskie zametki},
     pages = {561--570},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a6/}
}
TY  - JOUR
AU  - A. N. Parshin
TI  - Algebraic curves over functional fields with a~finite field of constants
JO  - Matematičeskie zametki
PY  - 1974
SP  - 561
EP  - 570
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a6/
LA  - ru
ID  - MZM_1974_15_4_a6
ER  - 
%0 Journal Article
%A A. N. Parshin
%T Algebraic curves over functional fields with a~finite field of constants
%J Matematičeskie zametki
%D 1974
%P 561-570
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a6/
%G ru
%F MZM_1974_15_4_a6
A. N. Parshin. Algebraic curves over functional fields with a~finite field of constants. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 561-570. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a6/