A method of constructing generalized difference sets
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 551-560
Cet article a éte moissonné depuis la source Math-Net.Ru
On the elements of the ring of residues modulo $v(2\nmid v,3\nmid v)$ we construct cyclic PBIB-designs with $\tau(v)-1$ classes of connectedness, where $\tau(v)$ is the number of divisors of $v$. We prove the existence of cyclic BIB-designs with parameters $b$, $v$, $r$, $k$ and $\lambda$ such that: 1) $\lambda=k$ (and also $\lambda=k/2$ if $k$ is even), $k\ge4$, and $k-1\mid p-1$ for each prime divisor $p$ of the number $v$; 2) $\lambda=(k-l)/2$, $k$ odd, $k\ge3$, $k\mid p-1$ for each prime divisor $p$ of the number $v$.
@article{MZM_1974_15_4_a5,
author = {B. T. Rumov},
title = {A~method of constructing generalized difference sets},
journal = {Matemati\v{c}eskie zametki},
pages = {551--560},
year = {1974},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a5/}
}
B. T. Rumov. A method of constructing generalized difference sets. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 551-560. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a5/