A~method of constructing generalized difference sets
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 551-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the elements of the ring of residues modulo $v(2\nmid v,3\nmid v)$ we construct cyclic PBIB-designs with $\tau(v)-1$ classes of connectedness, where $\tau(v)$ is the number of divisors of $v$. We prove the existence of cyclic BIB-designs with parameters $b$, $v$, $r$, $k$ and $\lambda$ such that: 1) $\lambda=k$ (and also $\lambda=k/2$ if $k$ is even), $k\ge4$, and $k-1\mid p-1$ for each prime divisor $p$ of the number $v$; 2) $\lambda=(k-l)/2$, $k$ odd, $k\ge3$, $k\mid p-1$ for each prime divisor $p$ of the number $v$.
@article{MZM_1974_15_4_a5,
     author = {B. T. Rumov},
     title = {A~method of constructing generalized difference sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {551--560},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a5/}
}
TY  - JOUR
AU  - B. T. Rumov
TI  - A~method of constructing generalized difference sets
JO  - Matematičeskie zametki
PY  - 1974
SP  - 551
EP  - 560
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a5/
LA  - ru
ID  - MZM_1974_15_4_a5
ER  - 
%0 Journal Article
%A B. T. Rumov
%T A~method of constructing generalized difference sets
%J Matematičeskie zametki
%D 1974
%P 551-560
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a5/
%G ru
%F MZM_1974_15_4_a5
B. T. Rumov. A~method of constructing generalized difference sets. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 551-560. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a5/