The approximation of Сauchy singular integrals and their limiting values at the endpoints of the curve of integration
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 533-542
Voir la notice de l'article provenant de la source Math-Net.Ru
We examine a specific approximating process for the singular integral
$$
S^*(f;x)\equiv\frac1\pi\int_{-1}^{+1}\frac{f(t)}{\sqrt{1-t^2}(t-x)}\,dt\quad(-11),
$$
taken in the principal value sense. We study the influence of some local properties of the function $f$ on the convergence of the approximations. Next, assuming that $S^*(f;c)=\lim\limits_{x\to c}S^*(f;x)$, where $c$ is an arbitrary one of the endpoints $-1$ and $1$, we show that the conditions which guarantee the existence of the limiting values $S^*(f;c)$ ($c=\pm1$) and, moreover, the convergence of the process at an arbitrary point $x\in(-1,1)$ are not always sufficient for convergence of the approximations at the endpoints.
@article{MZM_1974_15_4_a3,
author = {D. G. Sanikidze},
title = {The approximation of {{\CYRS}auchy} singular integrals and their limiting values at the endpoints of the curve of integration},
journal = {Matemati\v{c}eskie zametki},
pages = {533--542},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a3/}
}
TY - JOUR AU - D. G. Sanikidze TI - The approximation of Сauchy singular integrals and their limiting values at the endpoints of the curve of integration JO - Matematičeskie zametki PY - 1974 SP - 533 EP - 542 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a3/ LA - ru ID - MZM_1974_15_4_a3 ER -
%0 Journal Article %A D. G. Sanikidze %T The approximation of Сauchy singular integrals and their limiting values at the endpoints of the curve of integration %J Matematičeskie zametki %D 1974 %P 533-542 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a3/ %G ru %F MZM_1974_15_4_a3
D. G. Sanikidze. The approximation of Сauchy singular integrals and their limiting values at the endpoints of the curve of integration. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 533-542. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a3/