The approximation of Сauchy singular integrals and their limiting values at the endpoints of the curve of integration
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 533-542
Cet article a éte moissonné depuis la source Math-Net.Ru
We examine a specific approximating process for the singular integral $$ S^*(f;x)\equiv\frac1\pi\int_{-1}^{+1}\frac{f(t)}{\sqrt{1-t^2}(t-x)}\,dt\quad(-1<x<1), $$ taken in the principal value sense. We study the influence of some local properties of the function $f$ on the convergence of the approximations. Next, assuming that $S^*(f;c)=\lim\limits_{x\to c}S^*(f;x)$, where $c$ is an arbitrary one of the endpoints $-1$ and $1$, we show that the conditions which guarantee the existence of the limiting values $S^*(f;c)$ ($c=\pm1$) and, moreover, the convergence of the process at an arbitrary point $x\in(-1,1)$ are not always sufficient for convergence of the approximations at the endpoints.
@article{MZM_1974_15_4_a3,
author = {D. G. Sanikidze},
title = {The approximation of {{\CYRS}auchy} singular integrals and their limiting values at the endpoints of the curve of integration},
journal = {Matemati\v{c}eskie zametki},
pages = {533--542},
year = {1974},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a3/}
}
TY - JOUR AU - D. G. Sanikidze TI - The approximation of Сauchy singular integrals and their limiting values at the endpoints of the curve of integration JO - Matematičeskie zametki PY - 1974 SP - 533 EP - 542 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a3/ LA - ru ID - MZM_1974_15_4_a3 ER -
D. G. Sanikidze. The approximation of Сauchy singular integrals and their limiting values at the endpoints of the curve of integration. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 533-542. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a3/