Algebraic independence of some values of the exponential function
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 661-672
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove general results concerning the algebraic independence of three values of the exponential function. For $\beta$ algebraic and of degree 7 and $\alpha$ algebraic and $\neq0,\,1$ there exist among the numbers $\alpha^\beta,\dots,\alpha^{\beta^6}$ three which are algebraically independent. The proof employs a method due to A. O. Gel'fond and N. I. Fel'dman.
@article{MZM_1974_15_4_a17,
author = {G. V. Chudnovskii},
title = {Algebraic independence of some values of the exponential function},
journal = {Matemati\v{c}eskie zametki},
pages = {661--672},
year = {1974},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a17/}
}
G. V. Chudnovskii. Algebraic independence of some values of the exponential function. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 661-672. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a17/