The Mathieu group $M_{12}$
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 651-660
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite simple non-Abelian group. $t$ is an involution of $G$, and $L=O^2(C_G(t)/O(C_G(t)))$. If the center $Z(L)$ is cyclic and $L/Z(L)\simeq PGL(2,q)$, $q$ odd, then either a Sylow 2-subgroup of $G$ is semidihedral or $C_G(t)\simeq Z_2\times PGL(2,5)$ and $G$ is isomorphic to the Mathieu group $M_{12}$ of degree 12.
@article{MZM_1974_15_4_a16,
author = {V. M. Sitnikov},
title = {The {Mathieu} group $M_{12}$},
journal = {Matemati\v{c}eskie zametki},
pages = {651--660},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a16/}
}
V. M. Sitnikov. The Mathieu group $M_{12}$. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 651-660. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a16/