The Mathieu group $M_{12}$
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 651-660.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite simple non-Abelian group. $t$ is an involution of $G$, and $L=O^2(C_G(t)/O(C_G(t)))$. If the center $Z(L)$ is cyclic and $L/Z(L)\simeq PGL(2,q)$, $q$ odd, then either a Sylow 2-subgroup of $G$ is semidihedral or $C_G(t)\simeq Z_2\times PGL(2,5)$ and $G$ is isomorphic to the Mathieu group $M_{12}$ of degree 12.
@article{MZM_1974_15_4_a16,
     author = {V. M. Sitnikov},
     title = {The {Mathieu} group $M_{12}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {651--660},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a16/}
}
TY  - JOUR
AU  - V. M. Sitnikov
TI  - The Mathieu group $M_{12}$
JO  - Matematičeskie zametki
PY  - 1974
SP  - 651
EP  - 660
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a16/
LA  - ru
ID  - MZM_1974_15_4_a16
ER  - 
%0 Journal Article
%A V. M. Sitnikov
%T The Mathieu group $M_{12}$
%J Matematičeskie zametki
%D 1974
%P 651-660
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a16/
%G ru
%F MZM_1974_15_4_a16
V. M. Sitnikov. The Mathieu group $M_{12}$. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 651-660. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a16/