The number of self-dual types in finite-valued logics
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 631-639.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the cycle indices of two groups of self-dual transformations of functions of an arbitrary finite-valued logic, and from them we derive explicit formulas for the number of types of functions relative to these groups.
@article{MZM_1974_15_4_a14,
     author = {I. \`E. Strazdin'},
     title = {The number of self-dual types in finite-valued logics},
     journal = {Matemati\v{c}eskie zametki},
     pages = {631--639},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a14/}
}
TY  - JOUR
AU  - I. È. Strazdin'
TI  - The number of self-dual types in finite-valued logics
JO  - Matematičeskie zametki
PY  - 1974
SP  - 631
EP  - 639
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a14/
LA  - ru
ID  - MZM_1974_15_4_a14
ER  - 
%0 Journal Article
%A I. È. Strazdin'
%T The number of self-dual types in finite-valued logics
%J Matematičeskie zametki
%D 1974
%P 631-639
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a14/
%G ru
%F MZM_1974_15_4_a14
I. È. Strazdin'. The number of self-dual types in finite-valued logics. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 631-639. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a14/