Transformations in hypercomplex Riemannian spaces
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 603-612.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that an integrable regular $H$-structure induces on a real manifold $M_n$ the structure of a hypercomplex analytic manifold ($h$-manifold) $\mathop M\limits^*{}_m$. We prove that the Lie derivative of a pure tensor $T$ on $M_n$ is an $h$-derivative of Lie providing $T$ is $h$-analytic. With the $h$-derivative of Lie there is associated on $\mathop M\limits^*{}_m$ the hypercomplex derivative of Lie. This enables us to associate to the motions and affine collineations in the Riemannian space $\mathop V\limits^*{}_m$ corresponding transformations in a real space $V_n$.
@article{MZM_1974_15_4_a11,
     author = {V. V. Navrozov},
     title = {Transformations in hypercomplex {Riemannian} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {603--612},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a11/}
}
TY  - JOUR
AU  - V. V. Navrozov
TI  - Transformations in hypercomplex Riemannian spaces
JO  - Matematičeskie zametki
PY  - 1974
SP  - 603
EP  - 612
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a11/
LA  - ru
ID  - MZM_1974_15_4_a11
ER  - 
%0 Journal Article
%A V. V. Navrozov
%T Transformations in hypercomplex Riemannian spaces
%J Matematičeskie zametki
%D 1974
%P 603-612
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a11/
%G ru
%F MZM_1974_15_4_a11
V. V. Navrozov. Transformations in hypercomplex Riemannian spaces. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 603-612. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a11/