Transformations in hypercomplex Riemannian spaces
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 603-612
Cet article a éte moissonné depuis la source Math-Net.Ru
It is well known that an integrable regular $H$-structure induces on a real manifold $M_n$ the structure of a hypercomplex analytic manifold ($h$-manifold) $\mathop M\limits^*{}_m$. We prove that the Lie derivative of a pure tensor $T$ on $M_n$ is an $h$-derivative of Lie providing $T$ is $h$-analytic. With the $h$-derivative of Lie there is associated on $\mathop M\limits^*{}_m$ the hypercomplex derivative of Lie. This enables us to associate to the motions and affine collineations in the Riemannian space $\mathop V\limits^*{}_m$ corresponding transformations in a real space $V_n$.
@article{MZM_1974_15_4_a11,
author = {V. V. Navrozov},
title = {Transformations in hypercomplex {Riemannian} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {603--612},
year = {1974},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a11/}
}
V. V. Navrozov. Transformations in hypercomplex Riemannian spaces. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 603-612. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a11/