Methods of solving Fredholm equations optimal on classes of functions
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 595-602
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the solution of linear Fredholm equations in the unit $s$-dimensional cube for classes of functions with a dominant mixed derivative of order $r$ in each variable. We present an algorithm for obtaining the solution over the whole domain with an error $O(N^{-r}\ln^{2s-1}N)$ in the uniform metric using the values of the given functions at $O(N\ln^{2s-1}N)$ points and consisting of $O(N\ln^{2s-1}N)$ elementary operations. We show that these estimates can only be improved at the expense of the exponent of $\ln N$.
@article{MZM_1974_15_4_a10,
author = {A. F. Shapkin},
title = {Methods of solving {Fredholm} equations optimal on classes of functions},
journal = {Matemati\v{c}eskie zametki},
pages = {595--602},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a10/}
}
A. F. Shapkin. Methods of solving Fredholm equations optimal on classes of functions. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 595-602. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a10/