Sequences of closed sets of bounded variation converging in the deviation metric
Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 521-526.

Voir la notice de l'article provenant de la source Math-Net.Ru

From an arbitrary convergent sequence of sets of bounded variation we can select a subsequence such that there is convergence in almost every hyperplane.
@article{MZM_1974_15_4_a1,
     author = {V. S. Meilanov},
     title = {Sequences of closed sets of bounded variation converging in the deviation metric},
     journal = {Matemati\v{c}eskie zametki},
     pages = {521--526},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a1/}
}
TY  - JOUR
AU  - V. S. Meilanov
TI  - Sequences of closed sets of bounded variation converging in the deviation metric
JO  - Matematičeskie zametki
PY  - 1974
SP  - 521
EP  - 526
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a1/
LA  - ru
ID  - MZM_1974_15_4_a1
ER  - 
%0 Journal Article
%A V. S. Meilanov
%T Sequences of closed sets of bounded variation converging in the deviation metric
%J Matematičeskie zametki
%D 1974
%P 521-526
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a1/
%G ru
%F MZM_1974_15_4_a1
V. S. Meilanov. Sequences of closed sets of bounded variation converging in the deviation metric. Matematičeskie zametki, Tome 15 (1974) no. 4, pp. 521-526. http://geodesic.mathdoc.fr/item/MZM_1974_15_4_a1/