An upper bound for the $\alpha$-height of $(0,1)$-matrices
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 421-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an upper bound for the $\alpha$-height of an arbitrary matrix of zeros and ones. We apply the result to a number of known combinatorial problems. By a $(0,1)$ matrix here we mean an arbitrary matrix whose elements are zeros and ones.
@article{MZM_1974_15_3_a8,
     author = {V. K. Leont'ev},
     title = {An upper bound for the $\alpha$-height of $(0,1)$-matrices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--429},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a8/}
}
TY  - JOUR
AU  - V. K. Leont'ev
TI  - An upper bound for the $\alpha$-height of $(0,1)$-matrices
JO  - Matematičeskie zametki
PY  - 1974
SP  - 421
EP  - 429
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a8/
LA  - ru
ID  - MZM_1974_15_3_a8
ER  - 
%0 Journal Article
%A V. K. Leont'ev
%T An upper bound for the $\alpha$-height of $(0,1)$-matrices
%J Matematičeskie zametki
%D 1974
%P 421-429
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a8/
%G ru
%F MZM_1974_15_3_a8
V. K. Leont'ev. An upper bound for the $\alpha$-height of $(0,1)$-matrices. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 421-429. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a8/