An upper bound for the $\alpha$-height of $(0,1)$-matrices
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 421-429
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain an upper bound for the $\alpha$-height of an arbitrary matrix of zeros and ones. We apply the result to a number of known combinatorial problems. By a $(0,1)$ matrix here we mean an arbitrary matrix whose elements are zeros and ones.
@article{MZM_1974_15_3_a8,
author = {V. K. Leont'ev},
title = {An upper bound for the $\alpha$-height of $(0,1)$-matrices},
journal = {Matemati\v{c}eskie zametki},
pages = {421--429},
year = {1974},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a8/}
}
V. K. Leont'ev. An upper bound for the $\alpha$-height of $(0,1)$-matrices. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 421-429. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a8/