Order function for almost all numbers
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 405-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

For almost all pointsxgrexist $\xi\in R^m$ ($m>2$) the inequality $$ \sup\ln\frac1{|P(\xi)|}\ll(\ln u)^{m+2}, $$ is valid, where the upper bound is taken over all nonzero polynomials $P$ for which $\exp(\operatorname{deg}P)L(P)$ where $L(P)$ is the sum of the moduli of the coefficients of $P$. When $m=1$ the exponent of the right side is equal to 2.
@article{MZM_1974_15_3_a6,
     author = {Yu. V. Nesterenko},
     title = {Order function for almost all numbers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {405--414},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a6/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - Order function for almost all numbers
JO  - Matematičeskie zametki
PY  - 1974
SP  - 405
EP  - 414
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a6/
LA  - ru
ID  - MZM_1974_15_3_a6
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T Order function for almost all numbers
%J Matematičeskie zametki
%D 1974
%P 405-414
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a6/
%G ru
%F MZM_1974_15_3_a6
Yu. V. Nesterenko. Order function for almost all numbers. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 405-414. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a6/