Order function for almost all numbers
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 405-414
Voir la notice de l'article provenant de la source Math-Net.Ru
For almost all pointsxgrexist $\xi\in R^m$ ($m>2$) the inequality
$$
\sup\ln\frac1{|P(\xi)|}\ll(\ln u)^{m+2},
$$
is valid, where the upper bound is taken over all nonzero polynomials $P$ for which
$\exp(\operatorname{deg}P)L(P)$ where $L(P)$ is the sum of the moduli of the coefficients of $P$.
When $m=1$ the exponent of the right side is equal to 2.
@article{MZM_1974_15_3_a6,
author = {Yu. V. Nesterenko},
title = {Order function for almost all numbers},
journal = {Matemati\v{c}eskie zametki},
pages = {405--414},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a6/}
}
Yu. V. Nesterenko. Order function for almost all numbers. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 405-414. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a6/