Summability of series with respect to a Haar system by the $(C,1)$ method
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 393-404
Cet article a éte moissonné depuis la source Math-Net.Ru
For a Haar-system series we prove that if the lower bound of the $(C,1)$ means of the series is larger than $-\infty$ on a set $E$ of positive measure, then the series converges to a finite function almost everywhere on $E$; from this it follows that Haar-system series are not summable by the $(C,1)$ method to $+\infty$ on sets of positive measure.
@article{MZM_1974_15_3_a5,
author = {L. A. Shaginyan},
title = {Summability of series with respect to {a~Haar} system by the $(C,1)$ method},
journal = {Matemati\v{c}eskie zametki},
pages = {393--404},
year = {1974},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a5/}
}
L. A. Shaginyan. Summability of series with respect to a Haar system by the $(C,1)$ method. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 393-404. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a5/