Summability of series with respect to a~Haar system by the $(C,1)$ method
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 393-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a Haar-system series we prove that if the lower bound of the $(C,1)$ means of the series is larger than $-\infty$ on a set $E$ of positive measure, then the series converges to a finite function almost everywhere on $E$; from this it follows that Haar-system series are not summable by the $(C,1)$ method to $+\infty$ on sets of positive measure.
@article{MZM_1974_15_3_a5,
     author = {L. A. Shaginyan},
     title = {Summability of series with respect to {a~Haar} system by the $(C,1)$ method},
     journal = {Matemati\v{c}eskie zametki},
     pages = {393--404},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a5/}
}
TY  - JOUR
AU  - L. A. Shaginyan
TI  - Summability of series with respect to a~Haar system by the $(C,1)$ method
JO  - Matematičeskie zametki
PY  - 1974
SP  - 393
EP  - 404
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a5/
LA  - ru
ID  - MZM_1974_15_3_a5
ER  - 
%0 Journal Article
%A L. A. Shaginyan
%T Summability of series with respect to a~Haar system by the $(C,1)$ method
%J Matematičeskie zametki
%D 1974
%P 393-404
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a5/
%G ru
%F MZM_1974_15_3_a5
L. A. Shaginyan. Summability of series with respect to a~Haar system by the $(C,1)$ method. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 393-404. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a5/