Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 387-392
Cet article a éte moissonné depuis la source Math-Net.Ru
For even values of $n$ we find the exact values of the diameters $d_n(W^{(r)}H_\omega)$ of the classes of $2\pi$-periodic functions $W^{(r)}H_\omega$ ($\omega(t)$ is an arbitrary convex upwards modulus of continuity) in the space $C_2\pi$. We find that $d_{2n}(W^{(r)}H_\omega)$ ($n=1,2,\dots$; $r=0,1,2,\dots$).
@article{MZM_1974_15_3_a4,
author = {V. I. Ruban},
title = {Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$},
journal = {Matemati\v{c}eskie zametki},
pages = {387--392},
year = {1974},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a4/}
}
V. I. Ruban. Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 387-392. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a4/