Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 387-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

For even values of $n$ we find the exact values of the diameters $d_n(W^{(r)}H_\omega)$ of the classes of $2\pi$-periodic functions $W^{(r)}H_\omega$ ($\omega(t)$ is an arbitrary convex upwards modulus of continuity) in the space $C_2\pi$. We find that $d_{2n}(W^{(r)}H_\omega)$ ($n=1,2,\dots$; $r=0,1,2,\dots$).
@article{MZM_1974_15_3_a4,
     author = {V. I. Ruban},
     title = {Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {387--392},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a4/}
}
TY  - JOUR
AU  - V. I. Ruban
TI  - Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$
JO  - Matematičeskie zametki
PY  - 1974
SP  - 387
EP  - 392
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a4/
LA  - ru
ID  - MZM_1974_15_3_a4
ER  - 
%0 Journal Article
%A V. I. Ruban
%T Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$
%J Matematičeskie zametki
%D 1974
%P 387-392
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a4/
%G ru
%F MZM_1974_15_3_a4
V. I. Ruban. Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 387-392. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a4/