Peano's theorem in an infinite-dimensional Hilbert space is false even in a~weakened formulation
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 467-477
Voir la notice de l'article provenant de la source Math-Net.Ru
We formulate a continuous function $F\colon R\times H\to H$, where $H$ is a separable Hilbert space such that the Cauchy problem
$$
x'(t)=F(t,x(t)),\quad x(t_0)=x_0
$$
has no solution in any neighborhood of the point $t_0$, no matter what $t_0\in R$ and $x_0\in H$ are considered.
@article{MZM_1974_15_3_a13,
author = {A. N. Godunov},
title = {Peano's theorem in an infinite-dimensional {Hilbert} space is false even in a~weakened formulation},
journal = {Matemati\v{c}eskie zametki},
pages = {467--477},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a13/}
}
TY - JOUR AU - A. N. Godunov TI - Peano's theorem in an infinite-dimensional Hilbert space is false even in a~weakened formulation JO - Matematičeskie zametki PY - 1974 SP - 467 EP - 477 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a13/ LA - ru ID - MZM_1974_15_3_a13 ER -
A. N. Godunov. Peano's theorem in an infinite-dimensional Hilbert space is false even in a~weakened formulation. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 467-477. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a13/