Peano's theorem in an infinite-dimensional Hilbert space is false even in a weakened formulation
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 467-477
Cet article a éte moissonné depuis la source Math-Net.Ru
We formulate a continuous function $F\colon R\times H\to H$, where $H$ is a separable Hilbert space such that the Cauchy problem $$ x'(t)=F(t,x(t)),\quad x(t_0)=x_0 $$ has no solution in any neighborhood of the point $t_0$, no matter what $t_0\in R$ and $x_0\in H$ are considered.
@article{MZM_1974_15_3_a13,
author = {A. N. Godunov},
title = {Peano's theorem in an infinite-dimensional {Hilbert} space is false even in a~weakened formulation},
journal = {Matemati\v{c}eskie zametki},
pages = {467--477},
year = {1974},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a13/}
}
A. N. Godunov. Peano's theorem in an infinite-dimensional Hilbert space is false even in a weakened formulation. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 467-477. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a13/