Expansion in characteristic functions of the Schrödinger operator with a singular potential
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 455-465
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the spectral function of the operator $-\Delta+v(x)$ in three-dimensional space, where $v(x)$ is measurable and belongs to $L_2$. We study the differentiability of this function with respect to some measure. Simultaneously, we give estimates of the characteristic functions of a continuous spectrum at infinity. This justifies the decomposition of an arbitrary function in terms of the characteristic functions of an operator with this type of potential.
@article{MZM_1974_15_3_a12,
author = {G. N. Gestrin},
title = {Expansion in characteristic functions of the {Schr\"odinger} operator with a~singular potential},
journal = {Matemati\v{c}eskie zametki},
pages = {455--465},
year = {1974},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a12/}
}
G. N. Gestrin. Expansion in characteristic functions of the Schrödinger operator with a singular potential. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 455-465. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a12/