Absolute convergence of Fourier series with respect to bounded systems
Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 363-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that for the piecewise-linear unit jump approximation the sum of the moduli of the Fourier coefficients with respect to an arbitrary complete orthonormal system, which is totally bounded, has, when averaged over sections, a lower bound of order $\log N$, where $N^{-1}$ is the approximation step.
@article{MZM_1974_15_3_a1,
     author = {S. V. Bochkarev},
     title = {Absolute convergence of {Fourier} series with respect to bounded systems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {363--370},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a1/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - Absolute convergence of Fourier series with respect to bounded systems
JO  - Matematičeskie zametki
PY  - 1974
SP  - 363
EP  - 370
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a1/
LA  - ru
ID  - MZM_1974_15_3_a1
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T Absolute convergence of Fourier series with respect to bounded systems
%J Matematičeskie zametki
%D 1974
%P 363-370
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a1/
%G ru
%F MZM_1974_15_3_a1
S. V. Bochkarev. Absolute convergence of Fourier series with respect to bounded systems. Matematičeskie zametki, Tome 15 (1974) no. 3, pp. 363-370. http://geodesic.mathdoc.fr/item/MZM_1974_15_3_a1/