Extremal property of some surfaces in $n$-dimensional Euclidean space
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 247-254
Cet article a éte moissonné depuis la source Math-Net.Ru
A surface $\Gamma(f_1(x_1,\dots,x_m),\dots,f_n(x_1,\dots,x_n))$ is said to be extremal if for almost all points of $\Gamma$ the inequality $$\|\alpha_1f_1(x_1,\dots,x_m)+\dots+\alpha_nf_n(x_1,\dots,x_n)\|<H^{-n-\varepsilon},$$ where $H=\max(|\alpha_i|)$, ($i=1,2,\dots,n$), has only a finite number of solutions in the integers $\alpha_1,\dots,\alpha_n$. In this note we prove, for a specific relationship between $m$ and $n$ and a functional condition on the functions $f_1,\dots,f_n$, the extremality of a class of surfaces in $n$-dimensional Euclidean space.
@article{MZM_1974_15_2_a9,
author = {V. I. Bernik and \'E. I. Kovalevskaya},
title = {Extremal property of some surfaces in $n$-dimensional {Euclidean} space},
journal = {Matemati\v{c}eskie zametki},
pages = {247--254},
year = {1974},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a9/}
}
V. I. Bernik; É. I. Kovalevskaya. Extremal property of some surfaces in $n$-dimensional Euclidean space. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 247-254. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a9/