Conditions for the representability of analytic functions by series of rational functions
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 197-203
Cet article a éte moissonné depuis la source Math-Net.Ru
With a function $f(z)$, analytic in the unit circle, we associate by a specific rule the series $\sum_{n=1}^\infty\frac{A_n}{a-\lambda_nz}$, $|\lambda_n|<1$. We derive a (necessary and sufficient) condition for the convergence of the series in the unit circle. We derive further conditions under which the series converges to the function $f(z)$ itself.
@article{MZM_1974_15_2_a2,
author = {T. A. Leont'eva},
title = {Conditions for the representability of analytic functions by series of rational functions},
journal = {Matemati\v{c}eskie zametki},
pages = {197--203},
year = {1974},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a2/}
}
T. A. Leont'eva. Conditions for the representability of analytic functions by series of rational functions. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 197-203. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a2/