Cross products of complete orthonormal systems of functions
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 331-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

The orthonormal kernel is a continuous analog for an orthonormal system of functions. The cross product of any two orthonormal systems, complete in $L_2$, is an example of a complete orthonormal kernel with respect to Lebesgue measure. In this note we continue our study of the properties of the cross product of a Haar system with an arbitrary orthonormal system of functions, complete in $L_2$, and totally bounded. We investigate certain properties of the cross product of a Haar system with another Haar system.
@article{MZM_1974_15_2_a19,
     author = {S. V. Zotikov},
     title = {Cross products of complete orthonormal systems of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {331--340},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a19/}
}
TY  - JOUR
AU  - S. V. Zotikov
TI  - Cross products of complete orthonormal systems of functions
JO  - Matematičeskie zametki
PY  - 1974
SP  - 331
EP  - 340
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a19/
LA  - ru
ID  - MZM_1974_15_2_a19
ER  - 
%0 Journal Article
%A S. V. Zotikov
%T Cross products of complete orthonormal systems of functions
%J Matematičeskie zametki
%D 1974
%P 331-340
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a19/
%G ru
%F MZM_1974_15_2_a19
S. V. Zotikov. Cross products of complete orthonormal systems of functions. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 331-340. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a19/