Cross products of complete orthonormal systems of functions
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 331-340
Cet article a éte moissonné depuis la source Math-Net.Ru
The orthonormal kernel is a continuous analog for an orthonormal system of functions. The cross product of any two orthonormal systems, complete in $L_2$, is an example of a complete orthonormal kernel with respect to Lebesgue measure. In this note we continue our study of the properties of the cross product of a Haar system with an arbitrary orthonormal system of functions, complete in $L_2$, and totally bounded. We investigate certain properties of the cross product of a Haar system with another Haar system.
@article{MZM_1974_15_2_a19,
author = {S. V. Zotikov},
title = {Cross products of complete orthonormal systems of functions},
journal = {Matemati\v{c}eskie zametki},
pages = {331--340},
year = {1974},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a19/}
}
S. V. Zotikov. Cross products of complete orthonormal systems of functions. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 331-340. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a19/