Covering elements in the lattice of varieties of algebras
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 307-312
Cet article a éte moissonné depuis la source Math-Net.Ru
Let variety $\mathfrak U$ be given by the balanced identities of signature $\Omega$ not containing unary operations. Then, in the lattice of subvarieties of variety $\mathfrak U$, any element different from $\mathfrak U$ has an element covering it. In particular, variety $\mathfrak U$ might be the varieties of semigroups, groupoids, $n$-associatives, etc. It is also proven that, in the lattice of varieties of semigroups, there exists an element having a continuum of covering elements.
@article{MZM_1974_15_2_a16,
author = {A. N. Trakhtman},
title = {Covering elements in the lattice of varieties of algebras},
journal = {Matemati\v{c}eskie zametki},
pages = {307--312},
year = {1974},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a16/}
}
A. N. Trakhtman. Covering elements in the lattice of varieties of algebras. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 307-312. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a16/