Ideal points of semisimple Jordan algebras
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 295-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that I. L. Kantor has presented a local construction which assigns to a semisimple Jordan algebra a compact symmetric space with an extendible group of motions. For semisimple Jordan algebras of classical type we present a method of completion of the algebra space to a symmetric space in the large that generalizes the completion of a Euclidean space to a projective space and a conformai sphere.
@article{MZM_1974_15_2_a15,
     author = {B. O. Makarevich},
     title = {Ideal points of semisimple {Jordan} algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {295--305},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a15/}
}
TY  - JOUR
AU  - B. O. Makarevich
TI  - Ideal points of semisimple Jordan algebras
JO  - Matematičeskie zametki
PY  - 1974
SP  - 295
EP  - 305
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a15/
LA  - ru
ID  - MZM_1974_15_2_a15
ER  - 
%0 Journal Article
%A B. O. Makarevich
%T Ideal points of semisimple Jordan algebras
%J Matematičeskie zametki
%D 1974
%P 295-305
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a15/
%G ru
%F MZM_1974_15_2_a15
B. O. Makarevich. Ideal points of semisimple Jordan algebras. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 295-305. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a15/