Sufficient conditions for the self-adjointness of the Sturm--Liouville operator
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 271-280
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L$ be the minimal operator in $L_2(R^1)$ generated by the expression $ly=--y''+q(x)y$, $\operatorname{Im}q(x)\equiv0$, let $\Delta k$ ($k=\pm1,\pm2,\dots$) be a sequence of disjoint intervals going out to $\pm\infty$ for $k\to+\infty$, and let $\delta_k$ be the length $\Delta_k$. If $(ly,y)\ge-\gamma_k\|y\|^2$ on all smooth $y(x)$ with support in $\delta_k$, whereby $\gamma_k>0$,
$$\sum_{k=1}^\infty(\gamma_k+\delta_k^{-2})-1=\sum_{k=-\infty}^{-1}{(\gamma_k+\delta_k^{-2})-1=\infty},$$
then the operator $L$ is self-adjoint. This theorem generalizes criteria for the self-adjointness of $L$ obtained earlier by R. S. Ismagilov, A. Ya. Povzner, and D. B. Sears.
@article{MZM_1974_15_2_a12,
author = {Yu. B. Orochko},
title = {Sufficient conditions for the self-adjointness of the {Sturm--Liouville} operator},
journal = {Matemati\v{c}eskie zametki},
pages = {271--280},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a12/}
}
Yu. B. Orochko. Sufficient conditions for the self-adjointness of the Sturm--Liouville operator. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 271-280. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a12/