Axiomatic definition of a~quotient ring
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 255-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quotient ring $Q\Phi(R)$ of the ring $R$ with respect to a strong filter $\Phi$ of right ideals of $R$ is axiomatically defined as a maximal strong $\Phi$-essential extension of $R$. The ring $Q\Phi(R)$ is constructively obtained in the form of $\lim\operatorname{Hom_r}(I,R)$, where $I\in\Phi$.
@article{MZM_1974_15_2_a10,
     author = {V. P. Elizarov},
     title = {Axiomatic definition of a~quotient ring},
     journal = {Matemati\v{c}eskie zametki},
     pages = {255--262},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a10/}
}
TY  - JOUR
AU  - V. P. Elizarov
TI  - Axiomatic definition of a~quotient ring
JO  - Matematičeskie zametki
PY  - 1974
SP  - 255
EP  - 262
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a10/
LA  - ru
ID  - MZM_1974_15_2_a10
ER  - 
%0 Journal Article
%A V. P. Elizarov
%T Axiomatic definition of a~quotient ring
%J Matematičeskie zametki
%D 1974
%P 255-262
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a10/
%G ru
%F MZM_1974_15_2_a10
V. P. Elizarov. Axiomatic definition of a~quotient ring. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 255-262. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a10/