The haar system as an unconditional basis in $L_p[0, 1]$
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 191-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a short proof of the known Paley–Marcinkiewicz theorem: the Haar system is an unconditional basis in $L_p$ ($p>1$). The method of proof consists in a simplification for the Haar system of the method applied in R. Gundy's and other authors' papers for similar problems of the general theory of martingales.
@article{MZM_1974_15_2_a1,
     author = {V. F. Gaposhkin},
     title = {The haar system as an unconditional basis in $L_p[0, 1]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {191--196},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a1/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - The haar system as an unconditional basis in $L_p[0, 1]$
JO  - Matematičeskie zametki
PY  - 1974
SP  - 191
EP  - 196
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a1/
LA  - ru
ID  - MZM_1974_15_2_a1
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T The haar system as an unconditional basis in $L_p[0, 1]$
%J Matematičeskie zametki
%D 1974
%P 191-196
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a1/
%G ru
%F MZM_1974_15_2_a1
V. F. Gaposhkin. The haar system as an unconditional basis in $L_p[0, 1]$. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 191-196. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a1/