The haar system as an unconditional basis in $L_p[0, 1]$
Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 191-196
Cet article a éte moissonné depuis la source Math-Net.Ru
We give a short proof of the known Paley–Marcinkiewicz theorem: the Haar system is an unconditional basis in $L_p$ ($p>1$). The method of proof consists in a simplification for the Haar system of the method applied in R. Gundy's and other authors' papers for similar problems of the general theory of martingales.
@article{MZM_1974_15_2_a1,
author = {V. F. Gaposhkin},
title = {The haar system as an unconditional basis in $L_p[0, 1]$},
journal = {Matemati\v{c}eskie zametki},
pages = {191--196},
year = {1974},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a1/}
}
V. F. Gaposhkin. The haar system as an unconditional basis in $L_p[0, 1]$. Matematičeskie zametki, Tome 15 (1974) no. 2, pp. 191-196. http://geodesic.mathdoc.fr/item/MZM_1974_15_2_a1/