Dependence of differential properties of a function on the speed of its rational approximations in the metrics of $L_p$
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 79-90
We establish the existence almost everywhere on $[0,1]$ of a generalized differential of a given order for a function which can be sufficiently well approximated by rational functions in the metrics of $L_p[0,1]$ ($0
); we will clearly express the metric dimension of the set of points at which the function is not differentiable.
@article{MZM_1974_15_1_a8,
author = {E. A. Sevast'yanov},
title = {Dependence of differential properties of a~function on the speed of its rational approximations in the metrics of $L_p$},
journal = {Matemati\v{c}eskie zametki},
pages = {79--90},
year = {1974},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a8/}
}
TY - JOUR AU - E. A. Sevast'yanov TI - Dependence of differential properties of a function on the speed of its rational approximations in the metrics of $L_p$ JO - Matematičeskie zametki PY - 1974 SP - 79 EP - 90 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a8/ LA - ru ID - MZM_1974_15_1_a8 ER -
E. A. Sevast'yanov. Dependence of differential properties of a function on the speed of its rational approximations in the metrics of $L_p$. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 79-90. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a8/