A~remark concerning Pincherle bases
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 73-78
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we find sufficient conditions for uniqueness of expansion of any two functions $f(z)$ and $g(z)$ which are analytic in the circle $|z|$ ($0$) in series
$$f(z)=\sum_{n=0}^\infty(a_nf_n(z)+b_ng_n(z))$$
and
$$
g(z)=\sum_{n=0}^\infty(a_n\lambda_nf_n(z)+b_n\mu_ng_n(z)),$$
which are convergent in the compact topology, where $\{f_n(z)\}_{n=0}^\infty$ and $\{g_n(z)\}_{n=0}^\infty$ infin are given sequences of functions which are analytic in the same circle while $\{\lambda_n\}_{n=0}^\infty$ and $\{\mu_n\}_{n=0}^\infty$ are fixed sequences of complex numbers. The assertion obtained here complements a previously known result of M. G. Khaplanov and Kh. R. Rakhmatov.
@article{MZM_1974_15_1_a7,
author = {N. I. Nagnibida},
title = {A~remark concerning {Pincherle} bases},
journal = {Matemati\v{c}eskie zametki},
pages = {73--78},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a7/}
}
N. I. Nagnibida. A~remark concerning Pincherle bases. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 73-78. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a7/