A~remark concerning Pincherle bases
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 73-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we find sufficient conditions for uniqueness of expansion of any two functions $f(z)$ and $g(z)$ which are analytic in the circle $|z|$ ($0$) in series $$f(z)=\sum_{n=0}^\infty(a_nf_n(z)+b_ng_n(z))$$ and $$ g(z)=\sum_{n=0}^\infty(a_n\lambda_nf_n(z)+b_n\mu_ng_n(z)),$$ which are convergent in the compact topology, where $\{f_n(z)\}_{n=0}^\infty$ and $\{g_n(z)\}_{n=0}^\infty$ infin are given sequences of functions which are analytic in the same circle while $\{\lambda_n\}_{n=0}^\infty$ and $\{\mu_n\}_{n=0}^\infty$ are fixed sequences of complex numbers. The assertion obtained here complements a previously known result of M. G. Khaplanov and Kh. R. Rakhmatov.
@article{MZM_1974_15_1_a7,
     author = {N. I. Nagnibida},
     title = {A~remark concerning {Pincherle} bases},
     journal = {Matemati\v{c}eskie zametki},
     pages = {73--78},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a7/}
}
TY  - JOUR
AU  - N. I. Nagnibida
TI  - A~remark concerning Pincherle bases
JO  - Matematičeskie zametki
PY  - 1974
SP  - 73
EP  - 78
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a7/
LA  - ru
ID  - MZM_1974_15_1_a7
ER  - 
%0 Journal Article
%A N. I. Nagnibida
%T A~remark concerning Pincherle bases
%J Matematičeskie zametki
%D 1974
%P 73-78
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a7/
%G ru
%F MZM_1974_15_1_a7
N. I. Nagnibida. A~remark concerning Pincherle bases. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 73-78. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a7/