Rearrangements of the Haar system
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 63-71
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that any fixed rearrangement of the Haar system either is or is not a system of convergence almost everywhere simultaneously for all classes $L^p[0,1]$ ($1\le p\le\infty$).
@article{MZM_1974_15_1_a6,
author = {A. S. Krantsberg},
title = {Rearrangements of the {Haar} system},
journal = {Matemati\v{c}eskie zametki},
pages = {63--71},
year = {1974},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a6/}
}
A. S. Krantsberg. Rearrangements of the Haar system. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 63-71. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a6/