Rearrangements of the Haar system
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 63-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any fixed rearrangement of the Haar system either is or is not a system of convergence almost everywhere simultaneously for all classes $L^p[0,1]$ ($1\le p\le\infty$).
@article{MZM_1974_15_1_a6,
     author = {A. S. Krantsberg},
     title = {Rearrangements of the {Haar} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {63--71},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a6/}
}
TY  - JOUR
AU  - A. S. Krantsberg
TI  - Rearrangements of the Haar system
JO  - Matematičeskie zametki
PY  - 1974
SP  - 63
EP  - 71
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a6/
LA  - ru
ID  - MZM_1974_15_1_a6
ER  - 
%0 Journal Article
%A A. S. Krantsberg
%T Rearrangements of the Haar system
%J Matematičeskie zametki
%D 1974
%P 63-71
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a6/
%G ru
%F MZM_1974_15_1_a6
A. S. Krantsberg. Rearrangements of the Haar system. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 63-71. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a6/