The approximation of a~H\"older class of two variables by Riesz spherical means
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 33-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

For periodic functions of the Hölder class $H_2^\alpha$ ($0\alpha\le1$) defined in the two-dimensional space $E_2$, we find the asymptotic form as $R\to+\infty$ of the quantity $$\sup_{f\in H_2^\alpha}\|S_r^\delta(x,f)-f(x)\|_{C(E_2)}\left(\delta>\frac12+\alpha\right),$$ where $S_R^\delta(x,f)$ is the Riesz spherical mean of order $\delta$ of the Fourier series of the function $f(x)$.
@article{MZM_1974_15_1_a3,
     author = {B. I. Golubov},
     title = {The approximation of {a~H\"older} class of two variables by {Riesz} spherical means},
     journal = {Matemati\v{c}eskie zametki},
     pages = {33--43},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a3/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - The approximation of a~H\"older class of two variables by Riesz spherical means
JO  - Matematičeskie zametki
PY  - 1974
SP  - 33
EP  - 43
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a3/
LA  - ru
ID  - MZM_1974_15_1_a3
ER  - 
%0 Journal Article
%A B. I. Golubov
%T The approximation of a~H\"older class of two variables by Riesz spherical means
%J Matematičeskie zametki
%D 1974
%P 33-43
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a3/
%G ru
%F MZM_1974_15_1_a3
B. I. Golubov. The approximation of a~H\"older class of two variables by Riesz spherical means. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 33-43. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a3/