Structure of the point spectrum of a~linear operator
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 149-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order that a set of complex numbers be the point spectrum of some linear operator in a separable Hilbert space it is necessary and sufficient that it be a set of type $F_\sigma$.
@article{MZM_1974_15_1_a15,
     author = {L. N. Nikol'skaya},
     title = {Structure of the point spectrum of a~linear operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {149--158},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a15/}
}
TY  - JOUR
AU  - L. N. Nikol'skaya
TI  - Structure of the point spectrum of a~linear operator
JO  - Matematičeskie zametki
PY  - 1974
SP  - 149
EP  - 158
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a15/
LA  - ru
ID  - MZM_1974_15_1_a15
ER  - 
%0 Journal Article
%A L. N. Nikol'skaya
%T Structure of the point spectrum of a~linear operator
%J Matematičeskie zametki
%D 1974
%P 149-158
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a15/
%G ru
%F MZM_1974_15_1_a15
L. N. Nikol'skaya. Structure of the point spectrum of a~linear operator. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 149-158. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a15/