Modulus of continuity of solutions of second-order elliptic equations on a~plane
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 139-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the exponents in the Hölder boundary condition for generalized solutions of a secondorder elliptic equation of divergent form on a plane with coefficients from $L\infty$. The accuracy of the formula obtained is verified with an example.
@article{MZM_1974_15_1_a14,
     author = {A. L. Treskunov},
     title = {Modulus of continuity of solutions of second-order elliptic equations on a~plane},
     journal = {Matemati\v{c}eskie zametki},
     pages = {139--148},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a14/}
}
TY  - JOUR
AU  - A. L. Treskunov
TI  - Modulus of continuity of solutions of second-order elliptic equations on a~plane
JO  - Matematičeskie zametki
PY  - 1974
SP  - 139
EP  - 148
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a14/
LA  - ru
ID  - MZM_1974_15_1_a14
ER  - 
%0 Journal Article
%A A. L. Treskunov
%T Modulus of continuity of solutions of second-order elliptic equations on a~plane
%J Matematičeskie zametki
%D 1974
%P 139-148
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a14/
%G ru
%F MZM_1974_15_1_a14
A. L. Treskunov. Modulus of continuity of solutions of second-order elliptic equations on a~plane. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 139-148. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a14/