The use of a~connection between integral transforms for the computation of integrals
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 129-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved which establishes a connection between four well-known integral transforms: Laplace, Kantorovich–Lebedev, Mehler–Fok, and the $K$-transform of Meier. This theorem is used to calculate a number of integrals containing the Legendre function $\beta_{\frac12+i\tau}(x)$, and also the MacDonald function $K_{i\tau}$. Certain other integrals can be calculated by using the indicated method.
@article{MZM_1974_15_1_a13,
     author = {V. S. Ryko},
     title = {The use of a~connection between integral transforms for the computation of integrals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--137},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a13/}
}
TY  - JOUR
AU  - V. S. Ryko
TI  - The use of a~connection between integral transforms for the computation of integrals
JO  - Matematičeskie zametki
PY  - 1974
SP  - 129
EP  - 137
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a13/
LA  - ru
ID  - MZM_1974_15_1_a13
ER  - 
%0 Journal Article
%A V. S. Ryko
%T The use of a~connection between integral transforms for the computation of integrals
%J Matematičeskie zametki
%D 1974
%P 129-137
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a13/
%G ru
%F MZM_1974_15_1_a13
V. S. Ryko. The use of a~connection between integral transforms for the computation of integrals. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 129-137. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a13/