Interpolation in certain Hilbert spaces of analytic functions
Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 101-112
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we study, for a Hilbert space $\mathfrak H$ of analytic functions in the open unit disk, the dependence of the structure of the space of sequences $\mathfrak H(Z)=\{\{f(z_k)\}_{k=1}^\infty:f\in\mathfrak H\}$ on the choice of the sequence $Z=\{z_k\}_{k=1}^\infty$ of distinct points of the unit disk.
@article{MZM_1974_15_1_a10,
author = {S. V. Shvedenko},
title = {Interpolation in certain {Hilbert} spaces of analytic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {101--112},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a10/}
}
S. V. Shvedenko. Interpolation in certain Hilbert spaces of analytic functions. Matematičeskie zametki, Tome 15 (1974) no. 1, pp. 101-112. http://geodesic.mathdoc.fr/item/MZM_1974_15_1_a10/