Finite groups with biprimary subgroups of a~definite form
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 853-857.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the structure of finite groups in which, for any biprimary subgroup $B$, either $l_2(B)\le1$ or $O_2(B)$ is a metacyclic group. As a corollary of the result obtained here and of known results of other authors, a description is adduced of finite simple groups in which the intersection of any two distinct Sylow 2-subgroups is metacyclic.
@article{MZM_1973_14_6_a9,
     author = {V. A. Belonogov},
     title = {Finite groups with biprimary subgroups of a~definite form},
     journal = {Matemati\v{c}eskie zametki},
     pages = {853--857},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a9/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Finite groups with biprimary subgroups of a~definite form
JO  - Matematičeskie zametki
PY  - 1973
SP  - 853
EP  - 857
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a9/
LA  - ru
ID  - MZM_1973_14_6_a9
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Finite groups with biprimary subgroups of a~definite form
%J Matematičeskie zametki
%D 1973
%P 853-857
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a9/
%G ru
%F MZM_1973_14_6_a9
V. A. Belonogov. Finite groups with biprimary subgroups of a~definite form. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 853-857. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a9/