Finite groups with biprimary subgroups of a~definite form
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 853-857
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper studies the structure of finite groups in which, for any biprimary subgroup $B$, either $l_2(B)\le1$ or $O_2(B)$ is a metacyclic group. As a corollary of the result obtained here and of known results of other authors, a description is adduced of finite simple groups in which the intersection of any two distinct Sylow 2-subgroups is metacyclic.
@article{MZM_1973_14_6_a9,
author = {V. A. Belonogov},
title = {Finite groups with biprimary subgroups of a~definite form},
journal = {Matemati\v{c}eskie zametki},
pages = {853--857},
publisher = {mathdoc},
volume = {14},
number = {6},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a9/}
}
V. A. Belonogov. Finite groups with biprimary subgroups of a~definite form. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 853-857. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a9/