The distribution of eigenvalues of the Dirac operator
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 843-852.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirac system is studied on $(-\infty, \infty)$. Asymptotic formulas are obtained of the distribution for both positive, and negative eigenvalues. The asymptotic formulas, established in Theorem 1, are essentially different from formulas obtained by Sargsyan [1], and permit asymptotic formulas to be written for the distribution of positive (negative) eigenvalues, even in those cases when the negative (positive) spectrum is continuous, if appropriate conditions hold on the potential.
@article{MZM_1973_14_6_a8,
     author = {M. Otelbaev},
     title = {The distribution of eigenvalues of the {Dirac} operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {843--852},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a8/}
}
TY  - JOUR
AU  - M. Otelbaev
TI  - The distribution of eigenvalues of the Dirac operator
JO  - Matematičeskie zametki
PY  - 1973
SP  - 843
EP  - 852
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a8/
LA  - ru
ID  - MZM_1973_14_6_a8
ER  - 
%0 Journal Article
%A M. Otelbaev
%T The distribution of eigenvalues of the Dirac operator
%J Matematičeskie zametki
%D 1973
%P 843-852
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a8/
%G ru
%F MZM_1973_14_6_a8
M. Otelbaev. The distribution of eigenvalues of the Dirac operator. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 843-852. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a8/