Three-dimensional manifolds with hyperplane sections which are ruled surfaces
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 821-826.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonsingular 3-dimensional algebraic manifold over the field of complex numbers, whose general hyperplane section is a ruled surface with irregularity $q>0$, is birationally equivalent to the direct product of the projective plane and a nonsingular curve of genus $q$.
@article{MZM_1973_14_6_a5,
     author = {B. V. Martynov},
     title = {Three-dimensional manifolds with hyperplane sections which are ruled surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {821--826},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a5/}
}
TY  - JOUR
AU  - B. V. Martynov
TI  - Three-dimensional manifolds with hyperplane sections which are ruled surfaces
JO  - Matematičeskie zametki
PY  - 1973
SP  - 821
EP  - 826
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a5/
LA  - ru
ID  - MZM_1973_14_6_a5
ER  - 
%0 Journal Article
%A B. V. Martynov
%T Three-dimensional manifolds with hyperplane sections which are ruled surfaces
%J Matematičeskie zametki
%D 1973
%P 821-826
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a5/
%G ru
%F MZM_1973_14_6_a5
B. V. Martynov. Three-dimensional manifolds with hyperplane sections which are ruled surfaces. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 821-826. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a5/