$(i)$-Convergence and its application to a~sequence of functions
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 809-819.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(x_\alpha)_{\alpha\in A}$ , where $A$ is a directed set containing cofinal chains — a generalized sequence in a complete chain. It is established that every such sequence contains a monotonic cofinal sub-sequence. For a monotonically increasing (decreasing) bounded sequence $(x_\alpha)_{\alpha\in A}$, by definition, we put $(i)-\lim\limits_{\alpha\in A}x_\alpha=\sup\limits_{\alpha\in A}(x_\alpha)\cdot((i)-\lim\limits_{\alpha\in A}x_\alpha=\inf\limits_{\alpha\in A}(x_\alpha))$. For an arbitrary sequence $(x_\alpha)_\alpha\in A(i)$ the $(i)$-limit is defined as the common $(i)$-limit of its monotonic cofinal sub-sequences. The properties of $(i)$-convergence and some of its applications to generalized sequences of mappings are discussed.
@article{MZM_1973_14_6_a4,
     author = {V. I. Shirokov},
     title = {$(i)${-Convergence} and its application to a~sequence of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {809--819},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a4/}
}
TY  - JOUR
AU  - V. I. Shirokov
TI  - $(i)$-Convergence and its application to a~sequence of functions
JO  - Matematičeskie zametki
PY  - 1973
SP  - 809
EP  - 819
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a4/
LA  - ru
ID  - MZM_1973_14_6_a4
ER  - 
%0 Journal Article
%A V. I. Shirokov
%T $(i)$-Convergence and its application to a~sequence of functions
%J Matematičeskie zametki
%D 1973
%P 809-819
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a4/
%G ru
%F MZM_1973_14_6_a4
V. I. Shirokov. $(i)$-Convergence and its application to a~sequence of functions. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 809-819. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a4/