An irremovable Carleman singularity for Haar's system
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 799-807.

Voir la notice de l'article provenant de la source Math-Net.Ru

An example is constructed of a continuous function $f(x)$ that has the property that any function in $L_{(01)}^2$ that coincides with $f(x)$ on a set of positive measure realizes a Carleman singularity for Haar's system.
@article{MZM_1973_14_6_a3,
     author = {Yu. S. Fridlyand},
     title = {An irremovable {Carleman} singularity for {Haar's} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {799--807},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a3/}
}
TY  - JOUR
AU  - Yu. S. Fridlyand
TI  - An irremovable Carleman singularity for Haar's system
JO  - Matematičeskie zametki
PY  - 1973
SP  - 799
EP  - 807
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a3/
LA  - ru
ID  - MZM_1973_14_6_a3
ER  - 
%0 Journal Article
%A Yu. S. Fridlyand
%T An irremovable Carleman singularity for Haar's system
%J Matematičeskie zametki
%D 1973
%P 799-807
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a3/
%G ru
%F MZM_1973_14_6_a3
Yu. S. Fridlyand. An irremovable Carleman singularity for Haar's system. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 799-807. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a3/