An irremovable Carleman singularity for Haar's system
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 799-807
Cet article a éte moissonné depuis la source Math-Net.Ru
An example is constructed of a continuous function $f(x)$ that has the property that any function in $L_{(01)}^2$ that coincides with $f(x)$ on a set of positive measure realizes a Carleman singularity for Haar's system.
@article{MZM_1973_14_6_a3,
author = {Yu. S. Fridlyand},
title = {An irremovable {Carleman} singularity for {Haar's} system},
journal = {Matemati\v{c}eskie zametki},
pages = {799--807},
year = {1973},
volume = {14},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a3/}
}
Yu. S. Fridlyand. An irremovable Carleman singularity for Haar's system. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 799-807. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a3/