Some remarks on stable stochastic processes and $\alpha$-superharmonic functions
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 901-912
Voir la notice de l'article provenant de la source Math-Net.Ru
An integral representation is established for a stable multidimensional probability density. It is used for a new and direct proof of the fact that anagr-superharmonic function considered on the trajectories of a stable symmetric stochastic process with parameter a is a super-martingale. It is moreover established that the stable density belongs to the convex cone generated by the functions $\varepsilon_\alpha^{(r)}(x)$ of M. Riesz.
@article{MZM_1973_14_6_a15,
author = {N. S. Landkof},
title = {Some remarks on stable stochastic processes and $\alpha$-superharmonic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {901--912},
publisher = {mathdoc},
volume = {14},
number = {6},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a15/}
}
N. S. Landkof. Some remarks on stable stochastic processes and $\alpha$-superharmonic functions. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 901-912. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a15/