A~theorem on direct expansions of Abelian groups
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 879-884
Voir la notice de l'article provenant de la source Math-Net.Ru
The following assertion is proved: if the basis subgroups of the periodic part $t(G)$ of a non-denumerable Abelian $G$.oup $G$ have the same cardinality as $G$, then each of the subgroups contains, as a subgroup of the same cardinality as $G$, a direct component of $G$. The restriction on the cardinality of $G$ is essential.
@article{MZM_1973_14_6_a12,
author = {A. Yu. Soifer},
title = {A~theorem on direct expansions of {Abelian} groups},
journal = {Matemati\v{c}eskie zametki},
pages = {879--884},
publisher = {mathdoc},
volume = {14},
number = {6},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a12/}
}
A. Yu. Soifer. A~theorem on direct expansions of Abelian groups. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 879-884. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a12/