A~class of lacunary trigonometric series
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 781-788.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that there exists a sequence of natural numbers $\{n_k\}$ which does not belong to the class $B_2$ and which cannot be decomposed into a finite number of lacunary sequences such that: a) if the series $\sum_{k=-\infty}^\infty c_ke^{in}k^x$ converges on a set of positive measure, then the series consisting of the squares of the coefficients converges; b) for each set $E$ of positive measure we can remove from the system $\{e^{in}k^x\}_{k=-\infty}^\infty$ a finite number of terms with the result that what is left is a Bessel system in $L^2(E)$; and c) if the series $\sum_{k=-\infty}^\infty c_ke^{in}k^x$ converges to zero on a set of positive measure, then each coefficient is zero.
@article{MZM_1973_14_6_a1,
     author = {E. V. Orlov},
     title = {A~class of lacunary trigonometric series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {781--788},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a1/}
}
TY  - JOUR
AU  - E. V. Orlov
TI  - A~class of lacunary trigonometric series
JO  - Matematičeskie zametki
PY  - 1973
SP  - 781
EP  - 788
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a1/
LA  - ru
ID  - MZM_1973_14_6_a1
ER  - 
%0 Journal Article
%A E. V. Orlov
%T A~class of lacunary trigonometric series
%J Matematičeskie zametki
%D 1973
%P 781-788
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a1/
%G ru
%F MZM_1973_14_6_a1
E. V. Orlov. A~class of lacunary trigonometric series. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 781-788. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a1/