A class of lacunary trigonometric series
Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 781-788
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that there exists a sequence of natural numbers $\{n_k\}$ which does not belong to the class $B_2$ and which cannot be decomposed into a finite number of lacunary sequences such that: a) if the series $\sum_{k=-\infty}^\infty c_ke^{in}k^x$ converges on a set of positive measure, then the series consisting of the squares of the coefficients converges; b) for each set $E$ of positive measure we can remove from the system $\{e^{in}k^x\}_{k=-\infty}^\infty$ a finite number of terms with the result that what is left is a Bessel system in $L^2(E)$; and c) if the series $\sum_{k=-\infty}^\infty c_ke^{in}k^x$ converges to zero on a set of positive measure, then each coefficient is zero.
@article{MZM_1973_14_6_a1,
author = {E. V. Orlov},
title = {A~class of lacunary trigonometric series},
journal = {Matemati\v{c}eskie zametki},
pages = {781--788},
year = {1973},
volume = {14},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a1/}
}
E. V. Orlov. A class of lacunary trigonometric series. Matematičeskie zametki, Tome 14 (1973) no. 6, pp. 781-788. http://geodesic.mathdoc.fr/item/MZM_1973_14_6_a1/