Three-dimensional dynamic systems with noncoarse homoclinical contours
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 687-696
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with bifurcations of dynamic systems having noncoarse homoclinical contours. Cases are singled out when the bifurcation surface corresponding to the appearance of a noncoarse homoclinical contour can separate a Morse–Smiley system from a system with a countable set of periodic motions. An example is adduced of the existence of a countable set of stable periodic motions.
@article{MZM_1973_14_5_a8,
author = {N. K. Gavrilov},
title = {Three-dimensional dynamic systems with noncoarse homoclinical contours},
journal = {Matemati\v{c}eskie zametki},
pages = {687--696},
year = {1973},
volume = {14},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a8/}
}
N. K. Gavrilov. Three-dimensional dynamic systems with noncoarse homoclinical contours. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 687-696. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a8/