Three-dimensional dynamic systems with noncoarse homoclinical contours
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 687-696.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with bifurcations of dynamic systems having noncoarse homoclinical contours. Cases are singled out when the bifurcation surface corresponding to the appearance of a noncoarse homoclinical contour can separate a Morse–Smiley system from a system with a countable set of periodic motions. An example is adduced of the existence of a countable set of stable periodic motions.
@article{MZM_1973_14_5_a8,
     author = {N. K. Gavrilov},
     title = {Three-dimensional dynamic systems with noncoarse homoclinical contours},
     journal = {Matemati\v{c}eskie zametki},
     pages = {687--696},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a8/}
}
TY  - JOUR
AU  - N. K. Gavrilov
TI  - Three-dimensional dynamic systems with noncoarse homoclinical contours
JO  - Matematičeskie zametki
PY  - 1973
SP  - 687
EP  - 696
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a8/
LA  - ru
ID  - MZM_1973_14_5_a8
ER  - 
%0 Journal Article
%A N. K. Gavrilov
%T Three-dimensional dynamic systems with noncoarse homoclinical contours
%J Matematičeskie zametki
%D 1973
%P 687-696
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a8/
%G ru
%F MZM_1973_14_5_a8
N. K. Gavrilov. Three-dimensional dynamic systems with noncoarse homoclinical contours. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 687-696. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a8/