Symmetric cubature formulas for a truncated octahedron
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 667-675.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a truncated octahedron, which can be used to fill the whole space $\mathbf{R}^3$ by translating it, we construct symmetric cubature formulas, exact for polynomials of degrees 3, 5, and 7. We furnish estimates of the remainder terms, and we discuss the problem of numerical integration over an arbitrary bounded domain $D\subset\mathbf{R}^3$.
@article{MZM_1973_14_5_a6,
     author = {A. V. Yakovlev},
     title = {Symmetric cubature formulas for a truncated octahedron},
     journal = {Matemati\v{c}eskie zametki},
     pages = {667--675},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a6/}
}
TY  - JOUR
AU  - A. V. Yakovlev
TI  - Symmetric cubature formulas for a truncated octahedron
JO  - Matematičeskie zametki
PY  - 1973
SP  - 667
EP  - 675
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a6/
LA  - ru
ID  - MZM_1973_14_5_a6
ER  - 
%0 Journal Article
%A A. V. Yakovlev
%T Symmetric cubature formulas for a truncated octahedron
%J Matematičeskie zametki
%D 1973
%P 667-675
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a6/
%G ru
%F MZM_1973_14_5_a6
A. V. Yakovlev. Symmetric cubature formulas for a truncated octahedron. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 667-675. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a6/