Stability of unconditional convergence almost everywhere
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 645-654
Cet article a éte moissonné depuis la source Math-Net.Ru
We will investigate the properties of series of functions which are unconditionally convergent almost everywhere on $[0, 1]$. We will establish the following theorem: If the series $\sum_{k=1}^\infty f_k(x)$ converges unconditionally almost everywhere, then there exists a sequence $\{\beta_k\}_1^\infty$, $\beta_k\uparrow\infty$ such that if $\lambda_k\leqslant\beta_k$, $k=1,2,\dots$, the series $\sum_{k=1}^\infty\lambda_k f_k(x)$ converges unconditionally almost everywhere.
@article{MZM_1973_14_5_a4,
author = {B. S. Kashin},
title = {Stability of unconditional convergence almost everywhere},
journal = {Matemati\v{c}eskie zametki},
pages = {645--654},
year = {1973},
volume = {14},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a4/}
}
B. S. Kashin. Stability of unconditional convergence almost everywhere. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 645-654. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a4/