Stability of unconditional convergence almost everywhere
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 645-654.

Voir la notice de l'article provenant de la source Math-Net.Ru

We will investigate the properties of series of functions which are unconditionally convergent almost everywhere on $[0, 1]$. We will establish the following theorem: If the series $\sum_{k=1}^\infty f_k(x)$ converges unconditionally almost everywhere, then there exists a sequence $\{\beta_k\}_1^\infty$, $\beta_k\uparrow\infty$ such that if $\lambda_k\leqslant\beta_k$, $k=1,2,\dots$, the series $\sum_{k=1}^\infty\lambda_k f_k(x)$ converges unconditionally almost everywhere.
@article{MZM_1973_14_5_a4,
     author = {B. S. Kashin},
     title = {Stability of unconditional convergence almost everywhere},
     journal = {Matemati\v{c}eskie zametki},
     pages = {645--654},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a4/}
}
TY  - JOUR
AU  - B. S. Kashin
TI  - Stability of unconditional convergence almost everywhere
JO  - Matematičeskie zametki
PY  - 1973
SP  - 645
EP  - 654
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a4/
LA  - ru
ID  - MZM_1973_14_5_a4
ER  - 
%0 Journal Article
%A B. S. Kashin
%T Stability of unconditional convergence almost everywhere
%J Matematičeskie zametki
%D 1973
%P 645-654
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a4/
%G ru
%F MZM_1973_14_5_a4
B. S. Kashin. Stability of unconditional convergence almost everywhere. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 645-654. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a4/